
Random Variables
A random variable is a function that assigns a number to every
sample point in a sample space.  Random variables are usually
denoted by capital letters such as X, but they can also be denoted by
X  in which the dot signifies a sample point. As an example let’s 
define a random variable X  on the sample space for the four coin 
tosses  experiment.  Let  X  = 1 if the first toss is heads and 0 if 
the first toss is tails, then X(HTTH) = 1, X(THTH) = 0,
X(HHHT) = 1 and so on, where the HTTH, THTH, and the HHHT
are sample points for the experiment.
Let Y  = 1 if the third toss is a head and 0 if the third toss is tails, 
then Y(HTTH) = 0, Y(HHHT) = 1 and so on.
Random variables can be defined in terms of other random variables
as the following 3 examples show.
Let Z  = X  + Y     (Z = X + Y in the more common notation)     
then  Z(HHHH) = X(HHHH) + Y(HHHH) = 1 + 1 = 2.
         Z(HTTT) = X(HTTT) + Y(HTTT) = 1 + 0 = 1.
         Z(THTH) = X(THTH) + Y(THTH) = 0 + 0 = 0.
         Z(THHH) = X(THHH) +Y(THHH) = 0 + 1 = 1.
and so on.
Let W  = 5Y            (W = 5Y in the more common notation)   
then W(HTHH) = 5Y(HTHH) = 5 x 1 = 5.
       W(HHTH) = 5Y(HHTH) = 5 x 0 = 0.
And so on.
Let V  = X Z         (V = XZ in the more common notation)     
then V(HTHT) = X(HTHT)Z(HTHT) = 1 x 2 = 2.
       V(HTTT) = X(HTTT)Z(HTTT) = 1 x 1 = 1.
       V(THHT) = X(THHT)Z(THHT) = 0 x 1 = 0 and so on.
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The probability function p(x) of a random variable is a function
whose value for a given x is the probability that the random variable
takes on the value x.
The probability that a random variable takes on the value x is the
sum of the probabilities of the sample points which the random
variable assigns the value x.
Two random variables are identically distributed if they have
identical probability functions.
Independent random variables.
Two random variables X and Y are independent if 
P(X = x  and Y = y) = P(X = x)P(Y = y) for every 
possible value for x and every possible value for y.
Pairwise independence
The random variables X1, X2, ... , XN  are pairwise independent if
every pair of them are independent.
Expectation of a random variable
The “Lots of Coins” slot machine can return 0, 2, 5, 10, 20 or 50
coins with respective probabilities 414/500, 1/10, 1/25, 1/50, 1/100
and 1/500 .
Let fi be how many times in N spins i coins were returned on a spin,
then  0 f0 + 2 f2 + 5 f5 + 10 f10 + 20 f20 + 50 f50  is the total     
number of coins returned by the slot machine in N spins and the
average number of coins that were returned per spin is:
    (0 f0 + 2 f2 + 5 f5 + 10 f10 + 20 f20 + 50 f50) ) / N     
 =   0  + 2  + 5 + 10  + 20  + 50   f
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 is the relative frequency that i coins were returned on a spin in Nf
N
i

spins.                                                                                               
In the long run we expect   to be close to pi , the probability off

N
i

getting a return of i coins on a spin.  So the expected  average 
return per spin for this slot machine is:
 
0 414/500 + 2 1/10 + 5 1/25 + 10 1/50 + 20 1/100 + 50 1/500     
which equals .90.
The return on a spin is a random variable taking on the values 0, 2,
5, 10, 20, and 50 with probabilities 414/500, 1/10, 1/25, 1/50, 1/100
and 1/500.
In general, E(X) the expected value or expectation of a random
variable equals x1 p(x1) + x2 p(x2) + . . . + xk p(xk)  where  k is the
number of different values the random variable can take on , x1 , x2 ,..., xk  are the different values and the p(xi)’s are the probabilities of
getting those values.
In the slot machine example, we did not describe what the sample
space was.  In antique slot machines there were three reels with 20
stopping positions on each reel for a total of 8,000 stopping
positions. The sample space would be these 8,000 stopping
positions which each had a probability of 1/8000. Each stopping
position is a sample point.  The return on a spin random variable 
assigns a value to a sample point based on what the return would be
for the combination of symbols appearing on the payline for that
position. 
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In the formula E(X) = x1 p(x1) + x2 p(x2) + . . . + xk p(xk) , no
reference is made to the sample space.  We now give a definition of
E(X) which is equivalent to the previous one and which makes
reference to the sample space.
E(X) =  X( )p( ), where   is a sample point , X( ) is the value   
of X for that point, p( ) is the probability of the sample point, and
where the sum ranges over all the sample points.
The event that a random variable takes on the value xi is the set of
sample points for which  X( ) = xi and the probability for this event
is the sum of the probabilities for those sample points.
For any xi, the sum  X( )p( ) will include all the products 
X( )p( ) for which  X( ) =  xi . Factoring xi out of the sum of these  
products we have xi times the sum of the probabilities for the
sample points for which X( ) =  xi and this equals p(xi) .
So for any xi, the sum  X( )p( ) includes the product xi p(xi) . 
This shows that  E(X) =  X( )p( ) is equivalent to  
 E(X) = x1 p(x1) + x2 p(x2) + . . . + xk p(xk) .
Variance of a random variable
Consider the  random variables X and Y whose probability
functions are:
probability function of X: p(-1) = .4,  p(0) = .3, and p(1) = .3
probability function of Y: p(-10) = .04, p(0) = .93, and P(10) = .03
Both these random variables have 3 possible values and both have

4



an expectation of -.1, but the non zero values of random variable
Y’s possible values -10, 0, and 10 are farther away from the
expected value of -.1 than the non zero values of X whose possible
values are -1, 0 and 1.  
To measure the average deviation of a random variable X from it’s
expectation, we might try calculating the expectation of  X  - E(X).
But we would always get zero since the negative deviations would
cancel out the positive ones.  Two alternatives are either to calculate
the expectation of |X- E(x)| or to calculate the expectation of
(X - E(X))2 . The variance is the expectation of (X - E(X))2 .
Why choose (X - E(X))2 ? Well for one thing, it makes it easy to
prove the law of large numbers and that’s good enough for me.
The variance of a random variable X is:
V(X) = (x1 - E(X))2p(x1) + (x2 - E(X))2p(x2) + . . . + (xk -E(X))2p(xk)  where x1 , x2, . . . , xk are the possible values that X can take on , and
p(x1) , p(x2) , ...,  p(xk) are the probabilities that X will take on those
values.

Daniel Daniels                            updated 12/10/2022
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